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ABSTRACT
Graph convolutional neural networks (GCNs) have attracted much
attention in dealing with various node classification tasks on graphs.
Some real-world node classification tasks face the situation that
the number of minority class nodes is significantly less than that
of majority class nodes. This makes us more concerned about how
to effectively solve the problem of imbalanced node classification
based on GCNs. To solve this problem, we propose a Dual-branch
Graph Convolutional Network framework (D-GCN), which can re-
duce the dominant effect of majority class on topology aggregation
and the negative impact of information differences caused by graph
structure reconstruction. This framework achieves the goal of de-
creasing the possibility of misrecognizing the minority class nodes
as majority class and improving the classification performance of
minority class nodes. Experiments on several graph datasets demon-
strate that D-GCN outperforms representative baselines in solving
imbalanced node classification tasks.
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1 INTRODUCTION
Graphs are essential data structures that generally exist in the real
world, where entities are represented by nodes and relationships
are described by edges. For example, social networks, knowledge
graphs, and citation networks can all be represented by graphs. In

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSAE 2021, October 19–21, 2021, Sanya, China
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8985-3/21/10. . . $15.00
https://doi.org/10.1145/3487075.3487162

recent years, people have become increasingly interested in apply-
ing deep learning methods to graph data, and graph convolutional
networks (GCNs) have become a new research hotspot. GCNs have
made remarkable achievements in learning node representation,
and have been successfully used in different tasks, such as node
classification [1, 2] and recommendation [3].

The study of GCNs is based on the idea of transferring the meth-
ods of convolutional neural networks (CNNs) to graphs, focusing on
how to expand convolution on graphs to extract graph structure and
node feature information. According to different implementations
of graph convolution, GCNs can be classified into spatial-based and
spectral-based. Spatial methods [4–6] are based on the spatial rela-
tionship of nodes. They establish a fixed-size neighbor sequence for
every node, and then implement standard convolution operations
on the neighborhood. Spectral methods [7–9] propose to perform
convolution operation in spectral domain from the perspective of
graph signal processing, to avoid explicitly constructing fixed size
neighborhoods. Through these methods, GCNs effectively extract
the graph structure and feature information, and are successfully
applied to various node classification tasks.

However, in real-world applications, many graph datasets natu-
rally show highly skewed node class distributions. For example, in
the scenarios of fake accounts detection in social networks [10, 11],
spam reviews detection on e-commerce platforms [12], and fraud
detection in transaction networks [13], most of the samples are
normal (majority class), but only a small part are fraudulent (minor-
ity class). Applying existing methods directly to such imbalanced
data tends to bias to majority class in classification results. It means
that models are likely to misrecognize minority class nodes as the
majority class, seriously damaging the classification performance of
minority class nodes. How to effectively solve imbalanced classifi-
cation problems on graphs with the help of GCNs needs to conduct
more in-depth research.

There are two main problems in applying GCNs to imbalanced
scenarios. The first is topology aggregation. The core idea of graph
convolution is to aggregate the feature information of neighbor
nodes along the edges of the graph. It means that the class assign-
ment for each node is not only determined by its own features but
is also affected by its neighbor nodes. The imbalanced problem
will make majority class nodes dominate the feature propagation
between nodes. Thus, minority class nodes will be greatly impacted
by majority class nodes from nearby structures when aggregat-
ing neighborhood information to generate node representation.
The second is information differences. In work of [14], to solve
the problem of imbalanced class distribution, minority class nodes
are over-sampled. New minority class nodes are synthesized by
constructing an embedding space, and the relationship between
nodes is simulated by an edge generator. However, constructing
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new nodes and new edges will inevitably change the original graph
structure, which results in information differences.

In this paper, to alleviate the negative impact of the above prob-
lems on node classification performance, we propose a Dual-branch
Graph Convolution Network framework (D-GCN), which can re-
duce the possibility of misrecognizing minority class nodes as ma-
jority class and improve the classification performance of minority
class. First, according to the similarity of node features, we use k-
nearest neighbor [15] strategy to obtain the kNN reconstruct graph.
In this graph, nodes in the neighborhood are all with the most
similar features. This can prevent minority class nodes from being
dominated by majority class nodes in the neighborhood when ag-
gregating information. Secondly, we adopt the form of two branches.
One of the branches uses the kNN reconstruct graph to apply GCN
to eliminate the impact of topology aggregation. The other uses the
original graph to apply GCN to balance the possible negative impact
of information differences generated by graph reconstruction.

Our contributions can be summarized as follows:
• We use the k-nearest neighbor reconstruct graph, which
reduce the negative influence of minority class nodes from
majority class nodes on its nearby structures.

• We propose a Dual-branch Graph Convolutional Network
framework (D-GCN) with the form of two branches. On the
basis of using kNN to reconstruct the graph, it takes advan-
tage of the original graph structure information to reduce
the possible negative effects of information differences. Thus,
classification performance of the minority class is improved.

• Experiments on five graph datasets demonstrate the pro-
posed framework outperforms representative baselines in
imbalanced classification metrics.

2 RELATEDWORK
In this section, we briefly review related works on graph convolu-
tion neural networks and class imbalance problems.

2.1 Graph Convolutional Neural Networks
In these years, graph convolution neural networks (GCNs) have re-
ceived much attention and developed rapidly. Graph convolutional
neural network models can generally be categorized to spatial-
based and spectral-based. Spatial-based methods perform convo-
lution operations directly on graphs. For example, PATCHY-SAN
[4] uses a fixed size to convert the graph into a node sequence, and
then performs a standard convolution operation on the neighbor-
hood. GraphSAGE [5] proposes a method of randomly selecting
fixed-size neighborhoods for sampling and feature aggregating.
GAT [6] introduces the attention mechanism to graph networks.
The spectral-based methods perform convolution operations in the
spectral domain to avoid explicitly constructing a fixed size neigh-
borhood. For example, Bruna et al. [7] implement graph convolution
operations in the Fourier domain using graph Laplacian matrices.
ChebNet [8] further simplifies the graph convolution operation on
[7] by using the k-order Chebyshev polynomial of graph Laplacian.
GCN [9] proposes to aggregate only one-hop neighbors to obtain
a much simpler form. In addition, some methods [16–18] focus
on how to solve the problem of overfitting and over-smoothing
to construct deep graph networks. Some works [19] attempts to

Figure 1: The Overall Framework of D-GCN. D-GCN con-
tains two GCN branches, where the reconstruct graph
branch uses the k-nearest neighbor reconstruct graph Gknn
as Input, and the original graph branch uses the original
graph Gor i as Input.

enhance the existing GCNs by various improvements such as the
addition of layers, hyperparameters optimization, the combination
of activation functions, and so on.

2.2 Class Imbalance Problems
Class imbalance is a common problem in real-world applications.
Many graph datasets naturally show imbalanced class distribution,
such as social networks for fake accounts detections. Methods to
solve imbalance problems can usually be categorized to algorithm
level and data level. Algorithm-level approaches modify existing
algorithms to better recognize minority class samples. For example,
DR-GCN [20] proposes to impose a conditional adversarial regu-
larization and a distribution alignment regularization to deal with
graph imbalance data based on graph networks. RA-GCN [21] uses
weighing networks for samples to help the classifier fit better be-
tween classes and adopts an adversarial training approach to avoid
bias towards any classes. Data-level approaches directly adjust the
distribution of data classes by over-sampling or under-sampling
in preprocessing stage. GraphSMOTE [14] proposes to construct
an embedding space to encode the nodes similarity and synthesize
new nodes, then use an edge generator to simulate the relationship
between nodes to expand the graph. The work in [22] uses weighted
GNN as the classifier and presents a Binary tree-based Graph Over-
sampling Algorithm (BGOA) to tackle imbalanced problems on
non-Euclidean data.

3 THE PROPOSED MODEL
In this section, to solve the two problems mentioned in section 1, we
designed a Dual-branch Graph Convolution Network framework
(D-GCN). The framework of D-GCN is shown in Figure 1. There are
two key ideas in our model. First, according to the similarity of node
features, the k-nearest neighbor reconstruct graph is constructed as
the input of the reconstruct graph branch to train GCN. The other is
to use the original graph to train GCN in the original graph branch.
Then, concatenate the embeddings trained by the two branches
and use the final embedding to predict node classification. These
two optimizations can prevent our model from over-recognizing
the majority class and improve the performance of minority class.
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3.1 The Origin Graph Branch
Graph convolution network (GCN) [9] mainly focuses on semi-
supervised node classification on undirected graphs. An undirected
graph can be formally represented by G = (A,X) where A ∈ Rn×n

is the symmetric adjacency matrix on the graph with n nodes,
X ∈ Rn×d is the feature matrix of nodes, and d is node features
dimension. In the graph, if there is an edge between node i and
node j, then Aij = 1, otherwise, Aij = 0. All node representations in
GCN are regarded as graph signals, so the l-th graph convolution
layer can be represented as:

H(l ) = ReLU
(
D̃− 1

2 ÃD̃− 1
2H(l−1)W(l )

)
, (1)

where H(l ) is the output of the l-th graph convolutional layer, and
the initial H(0) = X. Here, Ã = A + I and D̃ is the diagonal matrix
of Ã. W(l ) is the weight matrix of the l-th layer. To simplify the
representation, we can use Â = D̃− 1

2 ÃD̃− 1
2 .

As for the origin graph branch, we have the original graphGor i =
(Aor i ,Xor i ), whereAor i = A and Xor i = X. The output embedding
of the original graph branch Zor i can be represented as:

Zor i =�Aor iReLU
(�Aor iXor iW(0)

)
W(1), (2)

whereW(0) ∈ Rd×nhid1 andW(1) ∈ Rnhid1×nhid2 are respectively
the learned parameters for the first and second convolution layers.

3.2 The Reconstruct Graph Branch
In the reconstruct graph branch, to avoid the negative influence
of majority class nodes nearby the structure when minority class
nodes are aggregating, we compute the similarity matrix S ∈ Rn×n

of all nodes based on node features. Specifically, the cosine similarity
is commonly used to measure the similarity between each pair of
node feature vectors, and the similarity between node feature xi
and node feature xj is represented as :

Si j =
xiT · xj
xixj

. (3)

So we have the kNN reconstruct graph Gknn = (Aknn ,Xknn ),
where Aknn = S and Xknn = X. The output embedding of the
reconstruct graph branch Zknn can be represented as:

Zknn = �AknnReLU
(�AknnXknnW(0)

)
W(1). (4)

3.3 Objective Function
According to the work in Section 3.1 and Section 3.2, the output
embedding can be finally represented as:

Z = concat(Zknn ,Zor i ). (5)

Then, perform a linear transformation and a softmax transfor-
mation on the embedding Z to obtain the prediction result Ŷ:

Ŷ = so f tmax (W · Z + b) . (6)

Using L to stand for the training set, the loss function of all nodes
participating in training can be expressed as:

L = −
∑

l ∈L

∑C

i=1
YllnŶl. (7)

Here, because our work mainly focuses on binary imbalanced
nodes classification on graphs, in the above equation we have C = 2.

4 EXPERIMENTS AND RESULTS
In this section, we conduct experiments to evaluate node classifi-
cation performance of D-GCN on graph datasets with imbalanced
classes.

4.1 Experimental Setup
4.1.1 Datasets. At present, the widely used benchmark graph
datasets are multi-classes and the distribution of classes are bal-
anced. In order to conduct experiments for imbalanced problems,
we carry out binary processing to five datasets (ACM [23], Blog-
Catalog [24], Citeseer, UAI [25], Cora). Here we label nodes of the
class with the least number as the positive class, and the rest are all
labeled negative class. The overview of datasets after binary pro-
cessing is summarized in Table 1. IR represents the imbalance rate,
which is the ratio of majority class nodes to minority class nodes.
The five imbalanced graph datasets used in the experiments across
a large IR range, from 2.1:1 to 14.0:1. Thus, we can evaluate the
performance of the proposed model in different levels of imbalance.

• ACM: This is extracted from theACM,where nodes represent
documents and edges exist between two documents with
the same author. The node features are representations of
document keywords.

• BlogCatalog: This social network is composed of bloggers
with their social relationships. Node features are constructed
from keywords of blogger profiles.

• Citeseer: Citeseer is a citation network for research papers,
where nodes are scientific publications and edges are links.

• UAI: This is a community detection network dataset. The
node features are user information such as age and gender,
and edges are interactions between users.

• Cora: Cora is a well-known citation network dataset, similar
to Citeseer.

4.1.2 Baselines. In order to assess the effectiveness of our model
on imbalanced node classification, we select the following represen-
tative models as baselines for performance comparison, including:

• GCN [9]: GCN learns node representation by aggregating
neighbor nodes, which is a popular semi-supervised graph
convolution models.

• kNN-GCN: kNN-GCN uses the k-nearest neighbor recon-
struct graph as the input of GCN. Here we use it as a baseline
to evaluate its performance alone without the original graph
branch.

• GAT [6]: GAT introduces the attention mechanism to graph
networks and is widely used as a baseline for GNNs.

4.1.3 Parameters Setting. For all baseline methods, they are ini-
tialized with the suggested parameters of their papers. We turn
their parameters to obtain optimal performance. For our D-GCN,
the two branches are both 2-layer GCN, and the dropout rate is
set to 0.5. We train two branches with the same hidden layer units
nhid1 and output embedding dimension nhid2 respectively, where
nhid1 ∈ {256, 512, 1024} and nhid2 ∈ {64, 128, 256}. In addition, we
have k ∈ {2 . . . 9} for k-nearest neighbor reconstruction graph. In
training, we use Adam optimizer with a learning rate of 0.001∼0.01
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Table 1: The Overview of Datasets

Datasets Nodes Edges Features Origin Classes Training Test IR

ACM 3025 13128 1870 3 60 1000 2.1:1
BlogCatalog 5196 171743 8189 6 120 1000 5.7:1
Citeseer 3327 4732 3703 6 120 1000 11.6:1
UAI 3067 28311 4973 19 380 1000 12.9:1
Cora 2708 5429 1433 7 140 1000 14.0:1

andweight decay ∈ {1e − 4, 5e − 4, 1e − 3, 5e − 3}. For all methods,
we run with the same partition of all datasets.

4.2 Evaluation Metrics
The imbalanced classification metrics used for evaluation are de-
fined based on the following four measurements. The superscript
c can be 0 or 1, respectively indicating negative class and positive
class in our binary classification.
tpc: The truth is c, and the prediction is c.
tnc: The truth is not c, and the prediction is not c.
fpc: The truth is not c, and the prediction is c.
fnc: The truth is c, and the prediction is not c.

We choose Macro F1 and Binary F1 to digitize the performance
of models in solving imbalanced classification. The definitions of
metrics are as follows.

Macro F1: In classification, F1 Score is defined as the harmonic
average of precision and recall for a specific class. In binary clas-
sification problems, Macro F1 represents the average F1 Score of
positive class and negative class, which is a metric suitable for eval-
uating imbalanced classification problems. For binary classification,
Macro F1 can be computed as:

Macro F1 =
1
2

(
2tp0

2tp0 + f p0 + f n0
+

2tp1

2tp1 + f p1 + f n1

)
. (8)

Binary F1: In binary classification problems, Binary F1 is the F1
Score of the minority class (positive class). This metric can evaluate
the performance in classifying minority class samples. Binary F1
can be calculated as:

Binary F1 =
2tp1

2tp1 + f p1 + f n1
. (9)

The value of two metrics ranges [0,1].

4.3 Imbalanced Node Classification
Regarding node classification performance of models on five imbal-
anced graph datasets, we show it in two aspects. One is to verify
the effectiveness of the D-GCN dual-branch architecture in Section
4.3.1, the other is to compare with the baseline methods in Section
4.3.2.

4.3.1 Dual Branch Effectiveness. The effectiveness of the D-GCN
dual-branch framework is verified by comparing the node classifica-
tion performance of dual-branch D-GCN with single-branch GCN
and kNN-GCN on five datasets. The results are shown in Figure 2.
From the results, we have the following observations:

• On BlogCatalog, Citeseer, and UAI datasets, kNN-GCN out-
performs GCN on Macro F1 and Binary F1. This shows that

Figure 2: The Results(%) of D-GCN, kNN-GCN, GCN.

using the kNN reconstruct graph based on feature similar-
ity in training can reduce the possibility of misrecognizing
minority nodes as the majority class.

• From the results on ACM and Cora datasets, it can be seen
that kNN-GCN does not always perform better than GCN.
This is probably since only using the kNN reconstruct graph
lacks the structure information of the original graph. This
proves the necessity of using the origin graph branch.

For all five datasets, classification performance of D-GCN is
better than that of GCN and kNN-GCN, integrating the advantages
of both, which demonstrates the necessity and effectiveness of the
dual-branch architecture of our model.

4.3.2 Performance Comparison. We compare classification per-
formance of D-GCN and all baseline methods on five datasets, as
shown in Table 2. Compared with GAT, a more advantageous model
than GCN, Binary F1 of D-GCN on the five datasets are increased
by 1.18%, 23.05%, 3.31%, 15.06%, and 2.93% respectively. That shows
that the improvement made by our model for the topology aggre-
gation problem is indeed effective and classification performance
of minority class nodes is improved. Compared with kNN-GCN,
D-GCN in Macro F1 outperforms by 4.21%, 1.18%, 3.02%, 1.80%,
7.88% respectively, and Binary F1 have also been improved accord-
ingly. This highlights the positive impact of using the original graph
structure information on imbalanced node classification. The com-
parison with all baseline methods shows our model outperforms
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Table 2: Node Classification Results (%) (Bold - Best, Underline - Runner-Up)

Datasets Metrics GCN kNN-GCN GAT D-GCN

ACM Macro F1 94.09 92.05 95.31 96.27
Binary F1 92.05 89.60 93.81 94.99

BlogCatalog Macro F1 78.47 82.97 71.72 84.15
Binary F1 62.64 70.71 48.98 72.03

Citeseer Macro F1 65.08 66.08 67.01 69.10
Binary F1 34.43 37.42 39.24 42.55

UAI Macro F1 67.65 73.53 67.39 75.33
Binary F1 39.71 51.01 40.00 55.06

Cora Macro F1 88.83 83.02 89.39 90.90
Binary F1 78.99 67.89 80.00 82.93

Figure 3: Visualization on Cora Dataset (Minority Class in
Red).

others, and achieves the goal of reducing the possibility of misrec-
ognizing minority nodes as the majority class and improving the
classification performance of the minority class.

4.4 Visualization
To further show the effectiveness of D-GCN, we implement the
visualization on Cora. We use the embedding from the last layer of
models before softmax and plot the embeddings using t-SNE. The
results on Cora are shown in Figure 3, whereminority class (positive
class) nodes are colored red. The visualization results of kNN-GCN
and GAT are not sufficiently good, because many positive nodes are
mixed with negative nodes. The visualization of GCN and D-GCN
both perform better for the boundary between two classes can be
seen more clearly and minority class nodes are more obviously
cluster together. That shows that the learned embedding has higher
intra-class similarity and inter-class difference.

5 CONCLUSION
In real world, graph networks in many scenarios naturally show
highly skewed node class distributions. In this paper, we propose a
Dual-branch Graph Convolutional Network framework (D-GCN)

to solve the imbalanced problem on graphs, which can prevent
the over-recognition of the majority class and improve the classi-
fication performance of minority class nodes. Specifically, on the
one hand, we use k-nearest neighbor strategy to reconstruct the
graph to avoid being dominated by the majority class nodes nearby
the structure when minority nodes aggregate information; on the
other hand, we adopt a dual-branch architecture to use the origi-
nal graph structure information to balance the negative impact of
information difference caused by graph structure reconstruction.
Finally, extensive experiments for the imbalance problem are con-
ducted and imbalance classification metrics are used to evaluate the
performance of models on each dataset. Both experimental results
and visualization results show that D-GCN is effective in solving
imbalanced node classification tasks on graphs.
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